

미국 유럽의 사이버보안 규제

USA – Executive Order 14028

EU – Cyber Resilience Act

자동차 시장의 사이버보안 규제

WP-29 – UN Regulation No. 155

ISO/SAE - 21434:2021

왜 사이버보안 규제를 강화할까요?

solarwinds

소프트웨어 공급망이 사이버보안에서 가장 취약한 고리입니다.

작년 한 해 동안 61%의 사업이 소프트웨어 공급망 위협으로 피해를 입었습니다.

출처:

https://www.capterra.com/resources/software-supply-chain-attacks/

한 회사내의 프로젝트에 대한 사이버보안 대응

소프트웨어 공급망(SSC)에서는...

소프트웨어 공급망(SSC)에서는...

사이버보안 강화를 위한 조치

SSC에서 SAST/DAST/SCA/IAST/Fuzzing등 Application Security Testing을 강화하고 준수

805

806

807

808

809

810

811

840

841

842

843

844

845

846

847 848

849

850 851

NIST – IR 8397

Recommended Minimum Standard for Developer Testing 2.1 Threat Modeling 2.2 Automated Testing 2.3 Code-Based, or Static, Analysis 2.4 Review for Hardcoded Secrets 2.5 Run with Language-Provided Checks and Protection 2.6 Black Box Test Cases 2.7 Code-Based Test Cases 2.8 Historical Test Cases 2.9 Fuzzing 2.10 Web Application Scanning 2.11 Check Included Software Components

FDA – Cybersecurity in Medical devices

As with other areas of product development, testing is used to demonstrate the effectiveness of
design controls. While software development and cybersecurity are closely related disciplines,
cybersecurity controls require testing beyond standard software verification and validation
activities to demonstrate the effectiveness of the controls in a proper security context to therefore
demonstrate that the device has a reasonable assurance of safety and effectiveness.
c. Vulnerability Testing (such as section 9.4 of ANSI/ISA 62443-4-1)
Manufacturers should provide details and evidence 46 of the following testing

- Manufacturers should provide details and evidence⁴⁶ of the following testing pertaining to known vulnerabilities:
 - Abuse case, malformed, and unexpected inputs,
 - Robustness

Cybersecurity Testing

- Fuzz testing
- Attack surface analysis,
- Vulnerability chaining,
- Closed box testing of known vulnerability scanning,
- Software composition analysis of binary executable files, and
- Static and dynamic code analysis, including testing for credentials that are "hardcoded," default, easily-guessed, and easily compromised.

Guidelines on Minimum Standards for Developer Verification of Software https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf

 $\frac{https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions}$

왜 오픈소스가 소프트웨어 공급망 위험 관리에서 중요할까요?

Percentage of Codebases That Is Open Source

76%

전체 프로젝트 코드 중 오픈 소스 코드의 평균적인 양

96%

상용 프로젝트가 오픈 소스를 포함

참조: 2023 Open Source Software Risk Analysis Report https://www.synopsys.com/ko-kr/software-integrity/em/ossra.html

OSSRA 리포트

- 상업용 프로젝트 코드에서 오픈 소스의 사용 양상에 대해 조사
- 2018년부터 매년 발행
- 시높시스 SIG의 CyRC(Cybersecurity Research Center)에서 담당

OSSRA 리포트의 데이터 소스

M&A로 인한 *1703* 개 프로젝트에 대한 감사

Industry	Distribution
Enterprise Software/SaaS	29%
Financial Services & FinTech	11%
Big Data, Al, Bl, Machine Learning	10%
Healthcare, Health Tech, Life Sciences	9%
Internet and Mobile Apps	7%
Internet & Software Infrastructure	6%
Marketing Tech	5%
Retail & E-Commerce	5%
Manufacturing, Industrials, Robotics	4%
Cybersecurity	3%
Virtual Reality, Gaming, Entertainment, Media	2%
Telecommunications & Wireless	2%
Aerospace, Aviation, Automotive, Transportation, Logistics	2%
EdTech	2%
Internet of Things	2%
Energy & CleanTech	1%
Computer Hardware & Semiconductors	1%
avpopevo:	

위험도 평가도 같이 수행한 프로젝트

오픈소스에서 *이미 알려진* 보안 취약점의 현황은...

84% of codebases scanned for risk assessment contained security vulnerabilities. 48% of these contained high-risk vulnerabilities.

보안 취약점에 대해 자세히 들여다 봅시다

CVE-2015-6420: 7% 의 코드베이스에서 발견

Common Weakness Enumeration (CWE)

CWE-502 - Deserialization of Untrusted Data

The application deserializes untrusted data without sufficiently verifying that the resulting data will be valid.

"보이지 않는" 의존성

595

프로젝트 당 평균 오픈 소스 컴포넌트 개수

소프트웨어 공급망의 사이버보안을 위해 오픈소스는 어떻게 관리해야 할까요?

오픈소스 의존성

자사 코드

바이너리 / 펌웨어

라이브러리

Software Bill of Materials (SBOM)

자동 생성, 컴퓨터를 통한 인식, 표준형식 (SPDX, CycloneDX, SWID)

___ <mark>실행 및 프로세스</mark> 일관성 있는 빈도, 깊이 및 분포

SBOM은 SCA의 한 부분

필요한 오픈소스 식별 방법 – Black Duck

완벽한 소프트웨어 구성 명세서 (SBOM)

개발 파이프라인에서 SBOM 생성

Black Duck SCA

SBOM 컴퍼넌트를 Risk Insights에 연결

최초 취약점 출처에서 BOM에 업데이트까지 4 시간

BDSA는 NVD 보다 수 일 이상 빠르게 취약점을 업데이트

소프트웨어 공급망(SSC)에서 SBOM을 통한 오픈소스 관리

SBOM을 통한 오픈소스 가시성의 사례

LOG4J

이 컴포넌트를 사용하는가?

어떤 버전을 사용하는가?

자사 소프트웨어 중 어느 버전이 영향을 받는가?

가시성 미확보

취약점이 대중에 공개

어떻게 발생한 취약점을 해결해야 하는가?

실질적으로 취약점을 해결했는가?

SBOM을 통한 가시성 확보

이 컴포넌트를 사용하는가?

어떤 버전을 사용하는가?

자사 소프트웨어 중 어느 버전이 영향을 받는가?

어떻게 발생한 취약점을 해결해야 하는가?

실질적으로 취약점을 해결했는가?

소프트웨어 공급망에서 오픈소스 보안은 모두의 몫!!!

It is your responsibility to track open source components, licenses, and vulnerabilities, and their associated risk, in your supply chain.

SBOM의 미래

SBOM의 미래

SCA

Coverity SAST

Black Duck Binary

Rapid Scan Static

Defensics & WhiteHat DAST

Seeker IAST

